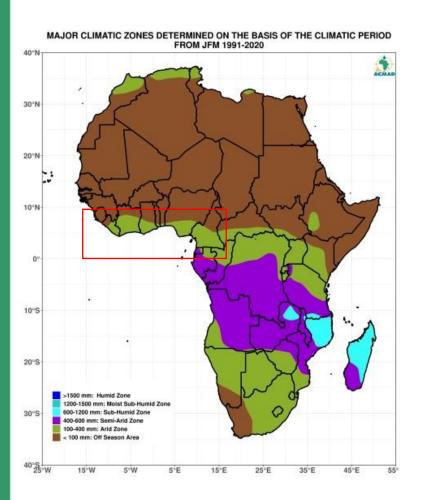
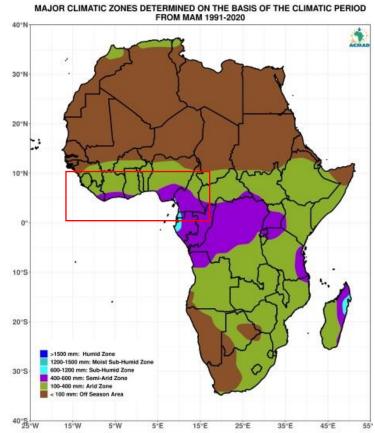


Climate variability and trends analysis

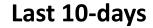

Prepared By: ACMAD Team

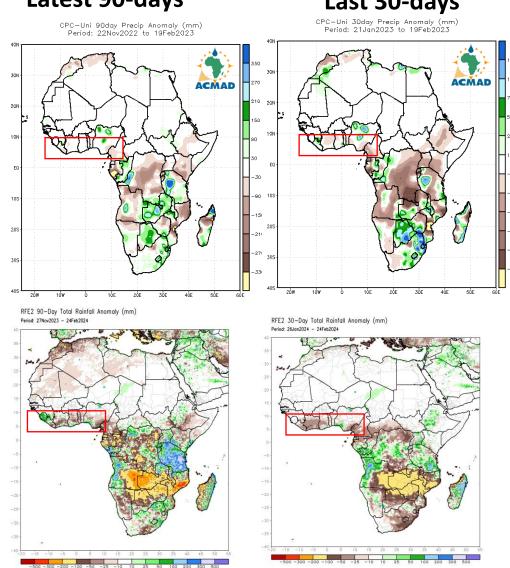


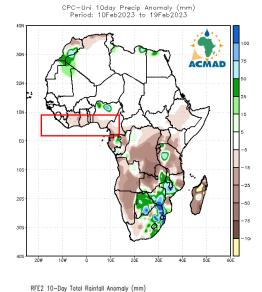
Time series analysis of Climate variability and trends (Climatic zones)

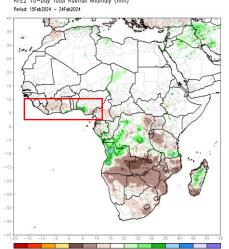
Season 1 = MARCH-APRIL-MAY

Season 2 = APRIL-MAY-JUNE

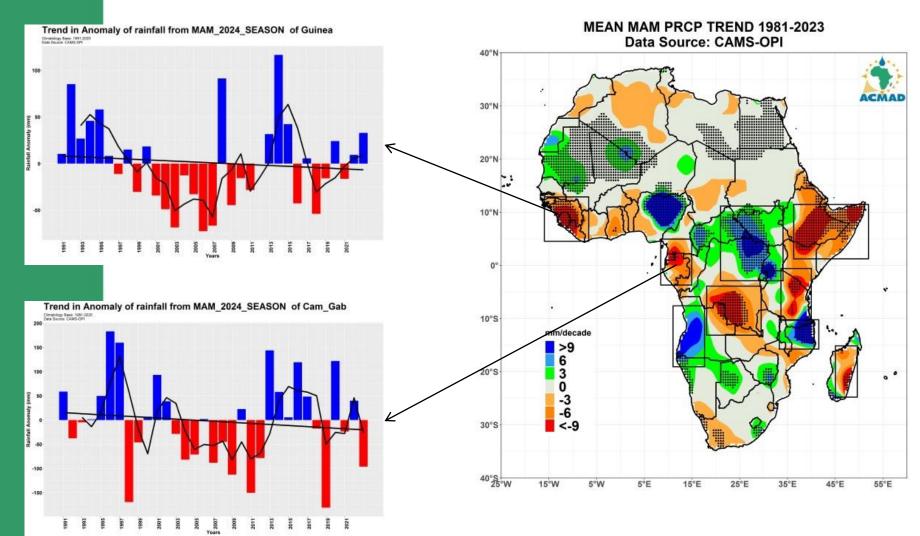

Time series analysis of Climate variability (seasonal and annual cycles, interannual/interdecadal variability) and trends



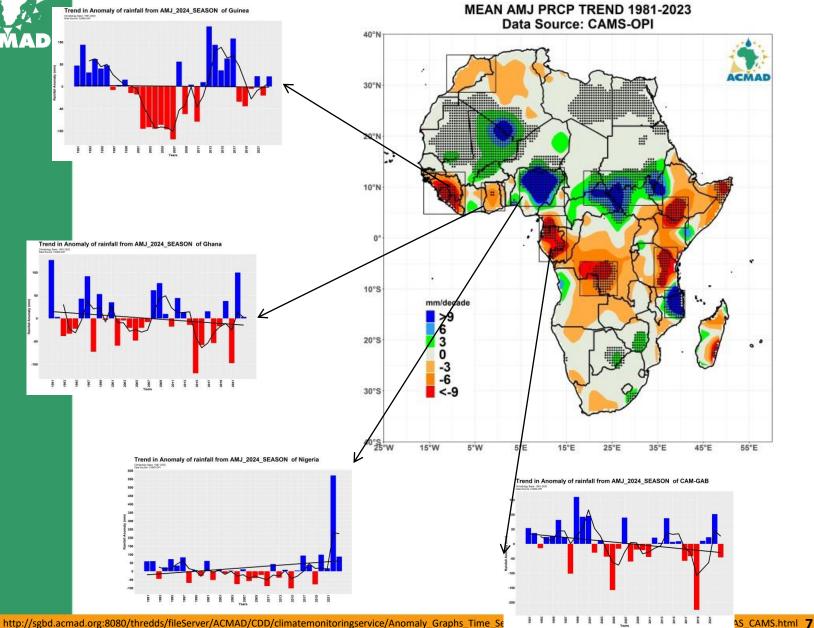

Time series analysis of Climate variability and trends(Persistence forecast)


Latest 90-days

Last 30-days

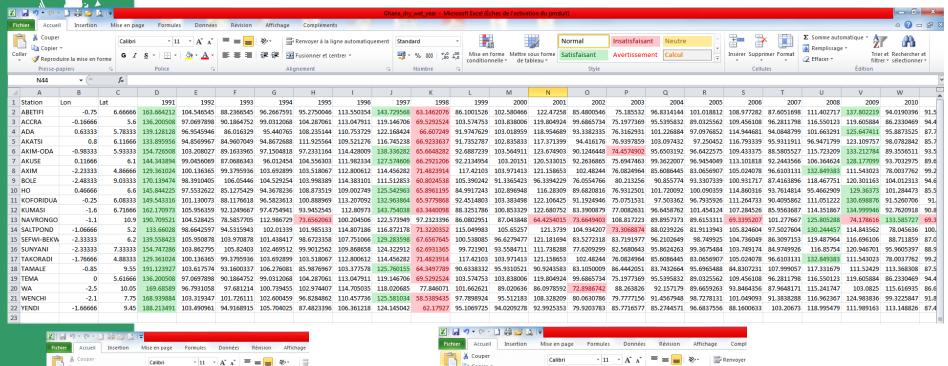


Time series analysis of Climate variability (seasonal and annual cycles, interannual/interdecadal variability) and trends (1/4) **Season 1 MAM** ARC2 **CHIRPS CPC-UNI** MEAN MAM PRCP TREND 1981-2023 Data Source: CPC-UNIFIED MEAN MAM PRCP TREND 1991-2023 MEAN MAM PRCP TREND 1981-2023 Data Source: CAMS-OPI MEAN MAM PRCP TREND 1991-2023 Data Source: CHIRPS Data Source: ARC2 >9 6 3 0 -3 -6 **Season 2 AMJ CHIRPS CPC-UNI** MEAN AMJ PRCP TREND 1991-2023 MEAN AMJ PRCP TREND 1991-2023 MEAN Apr-Jun_2023 PRCP TREND 1981-2023 Data Source: CPC-UNIFIED Data Source: CHIRPS Data Source: ARC2 Data Source: CAMS-OPI



Time series analysis of Climate variability (seasonal and annual cycles, interannual/interdecadal variability) and trends (1/5)

MAM Season 1


Time series analysis of Climate variability (seasonal and annual cycles, interannual/interdecadal variability) and trends (1/6)

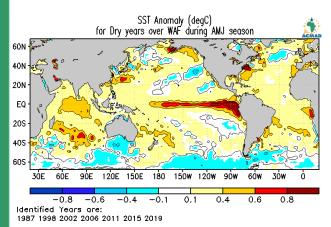
Identification of wet and Dry and Analysis of the drivers related patterns

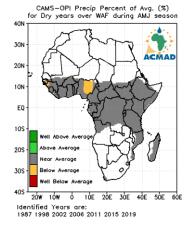
Process

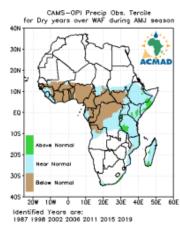
XIP ら・G・T 映写了 -									
Fi	chier Accue	Insertion	Mise en pa	ge Formule	es Donnée	s Révision	Affichage		
	🗎 🐰 Couper		Calibri	- 1	1 ' A A'	= = =	≫ =		
-	Copier 🛅	÷	Cuilbii						
Co	ller Reprod	luire la mise en t	forme G I	<u>s</u> -	<u>③</u> - A -	E = =	李李 重		
	Presse-p	apiers	G _i	G Police G			Ali		
	P11	▼ (e)	f_{x}						
1	Α	В	С	D	Е	F	G		
1	Station	Lon	Lat	1998	2015	MEAN			
2	ABETIFI	-0.75	6.66666	63.1462076	77.5369036	70.3415556			
3	ACCRA	-0.16666	5.6	69.5292524	74.5709611	72.0501068			
4	ADA	0.63333	5.78333	66.607249	69.5379485	68.0725987			
5	AKATSI	0.8	6.11666	66.9233637	66.2885483	66.605956			
6	AKIM-ODA	-0.98333	5.93333	65.6648282	89.2252176	77.4450229			
7	AKUSE	0.11666	6.1	66.2921206	72.7771645	69.5346426			
8	AXIM	-2.23333	4.86666	71.4823914	84.5752511	78.0288212			
9	BOLE	-2.48333	9.03333	60.8024539	63.8521725	62.3273132			
10	НО	0.46666	6.6	65.8961195	67.6070331	66.7515763			
11	KOFORIDUA	-0.25	6.08333	65.9779868	76.0062362	70.9921115			
12	KUMASI	-1.6	6.71666	63.3440098	82.1439015	72.7439556			
13	NAVRONGO	-1.1	10.9	97.2323396	47.8128372	72.5225884			
14	SALTPOND	-1.06666	5.2	71.3220352	79.6495734	75.4858043			
15	SEFWI-BEKW		6.2	67.6567645	93.6005045	80.6286345			
16	SUNYANI	-2.33333	7.33333	62.6931365		72.6038956			
17	TAKORADI	-1.76666	4.88333	71.4823914		78.0288212			
18	TAMALE	-0.85	9.55	64.3497789	56.1214513	60.2356151			
19	TEMA	0	5.61666	69.5292524	74.5709611	72.0501068			
20	WA	-2.5	10.05	77.846071	61.1687925	69.5074318			
21	WENCHI	-2.1	7.75	58.5389435	72.2933672				
22	YENDI	-1.66666	9.45	62.17927	56.6956481	59.4374591			
23									
24									
25									

X									
	Fic	hier Accuei	il Insertion	Mise en pa	ge Formule	s Données	Révision	Affichage	Compl
	-	Couper	г	Calibri	- 1		= _	≫ =	Renvoyer
	Щ	Copier	*	Calibri	* 1	1 · A A	_ = =	87° -	Kenvoyer
	Coller Reproduire la mise en forme				G I S - H - 💩 - A -			排作 🍱	Fusionne
		Presse-p	apiers	G.	Police	G _i		Ali	gnement
		J7	▼ (*)	f _x					
	1	Α	В	С	D	Е	F	G	Н
	1	Station	Lon	Lat	1991	1997	2009	MEAN_WET	
	2	ABETIFI	-0.75	6.66666	163.664212	143.729568	137.802219	148.398666	
	3	ACCRA	-0.16666	5.6	136.200508	119.146706	119.605884	124.984366	
	4	ADA	0.63333	5.78333	139.128128	122.168424	125.647411	128.981321	
	5	AKATSI	0.8	6.11666	133.895956	116.745238	123.109757	124.58365	
	6	AKIM-ODA	-0.98333	5.93333	154.726508	138.336282	133.212784	142.091858	
	7	AKUSE	0.11666	6.1	144.343894	127.574606	128.177099	133.3652	
	8	AXIM	-2.23333	4.86666	129.361024	114.456282	111.543023	118.453443	
	9	BOLE	-2.48333	9.03333	170.139474	111.512853	120.301163	133.984497	
	10	но	0.46666	6.6	145.844225	125.542963	129.36373	133.583639	ĺ
	11	KOFORIDUA	-0.25	6.08333	149.543316	132.963864	130.698876	137.735352	
	12	KUMASI	-1.6	6.71666	162.170973	143.754038	134.999946	146.974986	
	13	NAVRONGO	-1.1	10.9	190.709521	122.573949	74.178616	129.154028	
	14	SALTPOND	-1.06666	5.2	133.66028	116.872178	114.843562	121.792007	
	15	SEFWI-BEKW	-2.33333	6.2	139.558423	129.283598	116.696106	128.512709	
	16	SUNYANI	-2.33333	7.33333	154.747286	124.322912	120.946701		
	17	TAKORADI	-1.76666	4.88333	129.361024	114.456282	111.543023	118.453443	
	18	TAMALE	-0.85	9.55	191.123927	125.760155	111.52429	142.802791	
	19	TEMA	0	5.61666	136.200508	119.146706	119.605884	124.984366	-
	20	WA	-2.5	10.05	169.68589	118.020685	103.0825	130.263025	
	21	WENCHI	-2.1	7.75	168.939884	125.581034	124.983836	139.834918	
	22	YENDI	-1.66666	9.45	188.213491	124.145042	111.989163	141.449232	

9

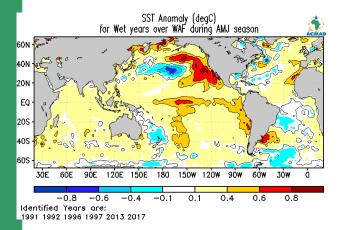


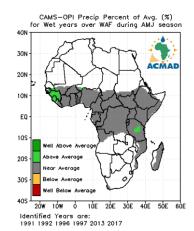

DRY

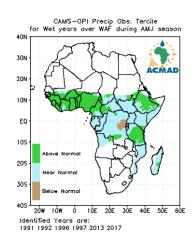

SST Composite

Composite analysis (Dry Years) - SSTs & Rainfall (AMJ)

Rainfall Composite

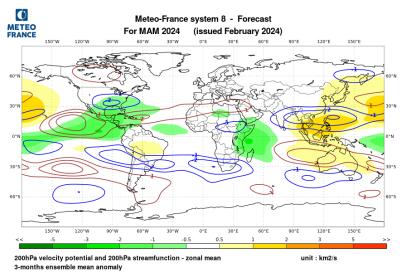


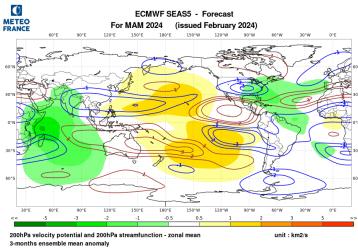


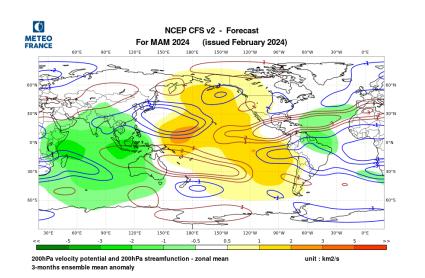


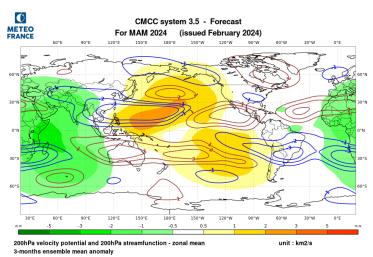
WAF
1987
1998
2002
2006
2011
2015
2019

WET

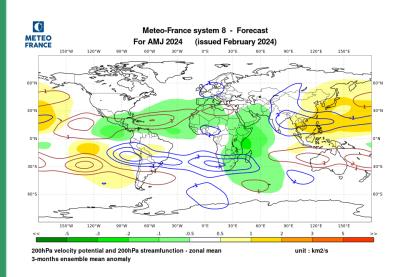


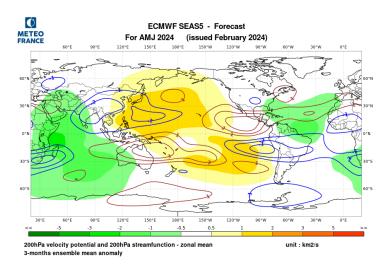

Step 7:

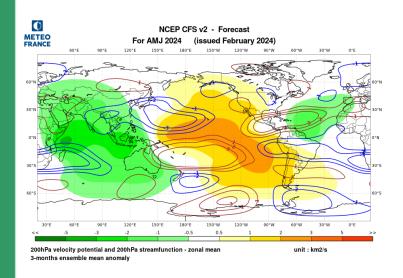

DRIVERS

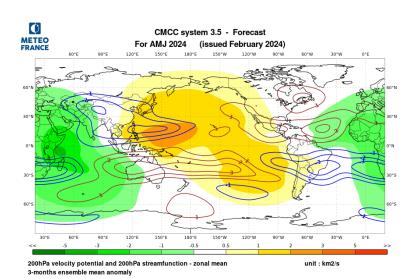


Interaction with Tropical Activity - Season 1

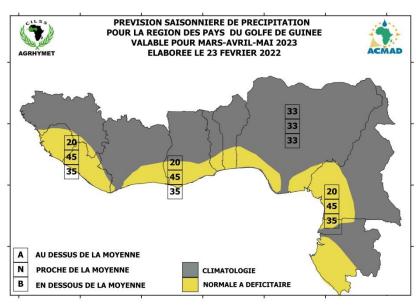


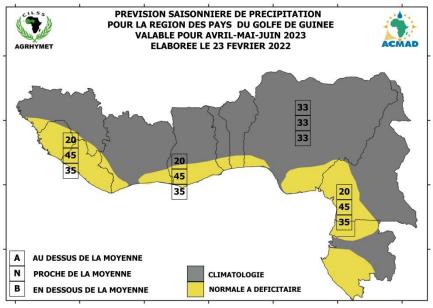






Interaction with Tropical Activity - Season 2





SEASONAL PRECIPITATION OUTLOOK FOR OND 2022

Follow us on Twitter:

@AcmadNiamey

Follow us on Facebook:

facebook

nttps://www.facebook.com/ACMAD-470332183044388