

Seasonal Forecast: What is it ?

J.P. Céron - SERCOM/ET-CSISO jpceron.wmo@gmail.com

> SWIOCOF On-line PreCOF 20-22/09/2021

The Predictability Adapt A@tion

« The memory stick will land on the mark at the ground » realistic ; one can trust such kind of forecast

The Predictability Adapt A@tion

« The paper sheet will land ... on the mark at the ground »

Not realistic, we can't trust such kind of forecast

« The paper sheet will land likely « close to » the mark at the ground

More realistic ; one can better trust such kind of forecast

The Predictability Adapt A@tion

METEO FRANCE

FRAMEWORK FOI

The Scientific bases

- The evolution of the atmosphere is partly driven by the evolution of external forcing conditions (SST and continental surfaces) which force the atmosphere to adjust its behaviour to these constraints.
- The evolution of external forcing is often slow and predictable. It gives a slow memory to the atmosphere, the evolution of the latter becoming partly predictable.
- The weather (successive instantaneous states) of the atmosphere have a limited predictability while the Climate (mean states) of the atmosphere have a greater predictability.
- The mean circulation in tropical regions is strongly inflenced by the large scale convection, itself being very sensitive to SST conditions.

BAL FRAMEWORK FOI

SWIOCOF On-line session

Adapt'A66

AdaptA@tion The Seasonal Forecast

Probabilistic nature of the forecast,

AdoptA@tion The Seasonal Forecast

Chaos and ensemble forecast

Uncertainty Sources :

- Differences between analysis and real initial state
 - Assimilation system Imperfection
 - Lack of observations
- Model Errors (both Oceanic and atmospheric but also coupling)
- Natural variability of the climate system
- Interpretation of the forecast

The Seasonal Forecast

LOBAL FRAMEWORK FOR

Reliability depends on the region

ENSO influence

Planetary influence of El Niño (left) and La Niña (right)

Climate Prediction Center

NCEP

WARM EPISODE RELATIONSHIPS DECEMBER - FEBRUARY

LOBAL FRAMEWORK FOR

WARM EPISODE RELATIONSHIPS JUNE - AUGUST

COLD EPISODE RELATIONSHIPS DECEMBER - FEBRUARY

Adapt'A@tion

COLD EPISODE RELATIONSHIPS JUNE - AUGUST

Reliability depends on the years,

Reliability and Skill

How can we detect the predictability ?

Analyse of the reaction of the atmosphere in the Tropics (direct and indirect action of SST) and beyond (especially via teleconnections to mid-latitudes)

Some periods where the predictability is :

« Good »

« Weak »

Adapt'A@tion

Observations (analyses) in the high troposphere of the components of the

SWIOCOF On-line session METEO FRANCE

OMMISSION

Reliability and Skill AdaptA@tion

Quality of the forecasts vs years (Geopotential Heigh) DJF season

GFCS

BAL ERAMEWORK FOR

Reliability and Skill

- Reliability depends on the year,
- Reliability depends on the region and the parameter
- Quality (scientific view) different than Usefulness (User view - economical value, additional value for Decision Making).

SWIOCOF On-line session

Adapt A lion

Reliability and Skill

Evaluation of the quality using a reference experience (retrospective forecast – e.g. 1993-2016)

2 complementary viewpoints :

Technical viewpoint :

'ERREGV

- Is the model good ? = Scores (SVS recommended by WMO)
- Is the model useful (better information than a reference strategy – e.g. Climatology or Persistence) ? = Skill-Scores

User viewpoint :

- Is the model useful (bringing a better information than the one currently used ? = Skill-Scores (using strategy reference from the users – e.g. Climatology)
- Is the use of the information brought additionnal value to the Decision Making Processes and/or to the users' activities ? = Value of the forecast (economical models like costs/losts or benefits/losts or ...)

SWIOCOF On-line session

Adapt'A@tion

Adapt A@tion The Seasonal Forecast

- Reliability depends on the year,
- Relaibility depends on the region and the parameter,
- Quality (scientific view) different than
 Usefulness (user view economical value, added value for Decision Making),
- Useful in a decision making context and for climate risk management ; especially for activities (including economic) which are sensitive to climate when the range of the forecast is consistent with the decision calendar of the stakeholder.

AdaptA@tion The Downscaling problem

Relevant Scales

- Mesh of the GCM ~ 100 km,
 3 month averaged information (or month by month)
- Scales of applications ~ 1m to 10 km, Day, 10 days, month,
- Climate parameters (RR, Tn, Tx, Number of days ...),
- Parameters from the application domain (Agriculture, Water resources, Health, ...),
- Climate parameters (RR, Tn, Tx, Wind,) for downstream operation of Users' models

SWIOCOF

On-line session

AdaptA@tion The Downscaling problem

Seasonal predictability and associated scales \Rightarrow usefull information for the user (scale adaptation)

SWIOCOF

On-line session

key questions

FRREG

ERAMEWORK FOI

Until which scales one can expect to downscale the large scale information ?

How to get the best compromise between the limits of seasonal predictability and the needs for applications?

METEC

FRANC

AdaptA@tion The downscaling problem

Downscaling in space and time

Strong relationship between space and time scales

Scientific bases

- Adjustement of the General Circulation to the different constraints imposed by the oceanic forcing (and continental surfaces),
- Chaos (uncertainty sources),
- Prediction of the Climate (mean effect of the General Circulation) conversely to the weather forecast (detailled chronology),

The Downscaling bases

The main goals of the downscaling is

- To take into acount mean local effects of the large scale forcing
- To adapt the seasonal forcasting information to the relevant scale for the user (at least to get better resolution generally needed both in space and time)

The downscaling should

- Reflect the mean effect of sub-grid processes forced by large scale conditions
- Take into account physical processes at the « local » scales
- Bring more than a simple interpolation

The downscaling brings

- some artificial increase in the resolution
- uncertainty which must be evaluated
 - Information which is part of the ensemble/probabilistic forecast

SWIOCOF On-line session METEO FRANCE

Adapt'A@tion

The Downscaling

Large Scale Forcing

One have chance to succeed If and Only If the smaller scales are significantly forced by the Large Scale signal.

Adapt'A@tion

The downscaling problem

LS forecast : Above normal

LS forcing : Trade wind anomaly

AdaptA@tion The downscaling problem

LS forecast : Above normal

LS forcing : Trade wind anomaly

Thank's to IRI

What to Remember Adapt A@tion

- Seasonal Forecast based on Numerical Modeling of the Climate system and the coupling between its different components,
- Forecast of the Climate (mean state) instead of the weather (detailed chronology),
- Probabilistic nature of the forecast,
- Potentially useful in a context of Climate Risk Management, of Decision Making and of Climate sensitive activities (especially economic but not only),
- Added value depending of the considered zone, season, year and parameter but there is real value,
- To be use in the best possible way, need a strong and close collaboration between providers and users and generally speaking downscaled/tailored information.

Seasonal forecast represent the first step of adaptation (to present and futur climate variability)

Adapt'A@tion

SWIOCOF On-line Pre-COF 20-22/09/2020

